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Abstract This study reports a characterization of the real part of dry particle refractive index (n) at 532 nm
based on airborne measurements over the United States, Canada, the Pacific Ocean, and the Gulf of
Mexico from the 2012 Deep Convective Clouds and Chemistry (DC3) and 2013 Studies of Emissions and
Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) campaigns. Effective
n values are reported, with the limitations and uncertainties discussed. Eight air mass types were identified
based on criteria related to gas-phase tracer concentrations, location, and altitude. Average values of n
for these air types ranged from 1.50 to 1.53. Values of n for the organic aerosol (OA) fraction (nOA) were
calculated using a linear mixing rule for each air mass type, with 1.52 shown to be a good approximation for
all OA. Case studies detailing vertical structure revealed that n and nOA increased with altitude, simultaneous
with enhancements in the mass fraction of OA. Values of nOA were positively (negatively) correlated with
the O:C (H:C) ratio in the absence of biomass burning influence; in contrast, the cumulative data set revealed a
slight decrease in nOA as a function of the O:C ratio. The performance of parametric (multiple linear
regression) and nonparametric (Gaussian process regression) methods in predicting n based on aerosol
composition data is discussed. It is shown that even small perturbations in n values significantly impact
aerosol optical depth retrievals, radiative forcing, and optical sizing instruments, emphasizing the importance
of further improving the understanding of this important aerosol property.

1. Introduction

The refractive index (m) of atmospheric aerosol particles is a critical optical property that is used both in cal-
culating parameters relevant to radiative transfer (e.g., extinction coefficient, single scattering albedo, and
asymmetry factor) and for quantitative interpretation of data from optically based measurement devices
such as optical particle counters (OPCs). There are two parts associated with the complexm of aerosol parti-
cles (m = n � ik), including the real (n) and imaginary (k) components, which account for scattering and
absorption, respectively. Poorly constrained values of m, especially for organic compounds (Cappa et al.,
2011; Zarzana et al., 2014) as compared to inorganics (Abo Riziq et al., 2007), contribute to one of the largest
sources of uncertainty in estimating aerosol effects on climate and total radiative forcing (Intergovernmental
Panel on Climate Change, 2013). Furthermore,m is a necessary parameter in atmospheric models to compute
optical properties (e.g., Chin et al., 2002; Kaufman et al., 1997; Kinne et al., 2003). Models obtain optical prop-
erty data from lookup tables such as in the Global Aerosol Data Set (Koepke et al., 1997).

The focus of this work is the real component of dry particle refractive indices (n). The aforementioned appli-
cations and impacts of n typically apply to ambient particles that have undergone some amount of humidi-
fication. Therefore, it is important to note that the n value of dry particles are typically converted to the
corresponding value for humidified particles using a volume-weightedmixing rule approach using the refrac-
tive index of water (e.g., Levoni et al., 1997; Shettle & Fenn, 1979). Past measurement studies of ambient aero-
sol particles have reported a wide range of n values, usually between 1.4 and 1.6, with variability attributed to
instrument wavelength, dry particle size, air mass type, and composition (e.g., Dubovik et al., 2002; Ferrare
et al., 1998; Guyon et al., 2003; Wang & Rood, 2008). There is a limited inventory of vertically resolved n data
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(e.g., Raut & Chazette, 2008), which is needed to quantify aerosol effects on vertical temperature profiles, con-
vection and redistribution of pollutants, and large-scale circulation patterns. In the absence of a direct mea-
surement, it is helpful to predict n based on other properties of aerosol. There is a scarcity of closure studies
that attempt to quantify the level of agreement between measured and predicted n values for ambient aero-
sol. Poor skill in predicting n values is problematic because a small error (5% change) can translate to a
change of ~30% in the radiative flux change at the top of the atmosphere (Redemann, Turco, Liou, Hobbs,
et al., 2000). An AERONET-based study showed that n values were the largest source of uncertainty in mod-
eled aerosol composition and aerosol water volume fraction (van Beelen et al., 2014).

The goal of this work is to report a characterization of n over North America using a combined data set col-
lected from two separate field campaigns in successive years (2012 and 2013). Owing to the extensive pay-
load of instruments used during the campaigns, it was possible to (i) define eight different air mass types, (ii)
categorize n values as a function of air mass type and altitude, (iii) derive values of n associated with organic
aerosol (nOA) and examine their relationship with the oxygen-to-carbon (O:C) atomic ratio of organic aerosol
(OA), (iv) use case studies in different areas of North America to investigate spatial variability in n and how it is
related to aerosol composition, including an examination of how well linear and nonlinear models can pre-
dict n based on aerosol composition data, and (v) to put results of this work into perspective with calculations
of how both aerosol optical depth (AOD) and radiative forcing are sensitive to n perturbations.

2. Experimental Methods
2.1. Field Campaign Descriptions

Data used in this study were taken over the continental United States, southern parts of Canada, the north-
eastern Pacific Ocean, and the Gulf of Mexico during two field campaigns using the NASA DC-8 aircraft (flight
tracks shown in Figure 1). The first campaign was the Deep Convective Clouds and Chemistry (DC3) campaign
based in Salina, Kansas in May–June 2012 (Barth et al., 2015). DC3 was a multiplatform campaign aimed at
studying the chemical and transport processes associated with deep convection, with a focus on storms
developing over Alabama, Colorado, North Texas, and Oklahoma. DC3 consisted of four test flights and 18
research flights. The second campaign was the Studies of Emissions and Atmospheric Composition, Clouds
and Climate Coupling by Regional Surveys (SEAC4RS) based out of Houston, Texas in August–September
2013 (Toon et al., 2016). SEAC4RS was a multiplatform effort focused on the atmospheric composition over
North America, with two test flights and 21 research flights conducted with the DC-8.

Because of the wide spatial range of the flights, numerous aerosol types, based on criteria in Table 1 (adopted
from Shingler, Crosbie, et al., 2016), were sampled during the campaigns. A total of 19,303 data points were
resolved into the following categories (number of points, N; cumulative sample time): Biomass Burning (BB)-
Agricultural (150; 0.34 hr), Background (7,472; 37.75 hr), BB-Wildfire (2,599; 8.18 hr), Biogenic (5,234; 22.19 hr),
Free Troposphere (FT; 1,981; 23.99 hr), Marine (500; 3.52 hr), Urban (407; 1.78 hr), and Mix (960; 2.79 hr).

2.2. Instrument Data Sets
2.2.1. DASH-SP Description
The Differential Aerosol Sizing and Hygroscopicity Spectrometer Probe (DASH-SP) provided rapid measure-
ments of size-resolved dry particle n values during both DC3 and SEAC4RS. The instrument has been dis-
cussed extensively in previous work, with most of the scientific focus placed on data derived for
hygroscopic growth factors, representing the ratio of humidified particle diameter to dry diameter (Hersey
et al., 2009, 2011, 2013; Shingler, Crosbie, et al., 2016; Shingler, Sorooshian, et al., 2016; Sorooshian, Hersey,
et al., 2008; Sorooshian, Murphy, et al., 2008; Sorooshian et al., 2017). Sampled particles first pass through
an isokinetically controlled inlet (McNaughton et al., 2007) prior to going through a dryer at the inlet of the
DASH-SP. Dried particles subsequently pass through an aerosol charge neutralizer and a classification differ-
ential mobility analyzer that produces a stream of dry, monodisperse particles. Those particles are then split
into two streams and fed to separate OPCs measuring light scattering with diode lasers at a wavelength of
532 nm (World Star Technologies, Model TECGL-30). One stream keeps particles in a dry state while the other
includes a diffusion-based aerosol conditioning module to bring particles to equilibrium at a controlled and
enhanced relative humidity (RH) prior to the OPCmeasurement. During the DC3 and SEAC4RS campaigns, the
DASH-SP sampled particles with scanning between dry diameters (Dp,dry) between 180 and 400 nm. The RH
in the dry OPC sampling channel was usually maintained below 15% (mean ± standard
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deviation = 12% ± 4%), which is the channel from which the dry particle n data are derived. Note that the wet
aerosol n values from the humidified OPC channel data are not used in this study as they are not
representative of ambient RH but rather a prescribed instrument RH.

Values of n are calculated from a calibration surface developed by determining the OPC electrical pulse
height signals for 36 dry mobility size settings between 150 and 500 nm for various calibration salts with
known n values (i.e., LiF, Na2SO4, K2SO4, (NH4)2SO4, NaCl, and polystyrene latex spheres). More specifically,
Figure S1 in the supporting information shows a representative calibration surface for Dp,dry versus electrical
pulse height, with different coloredmarkers for salts of varying n values. High-order polynomial equations are
derived based on the markers for each individual salt such that n can be determined based on knowledge of
Dp,dry and electrical pulse height. The uncertainty (or error), taken as the standard deviation (e.g., Taylor,
1982), in the n measurement varies based on where a sampled particle resides in Dp,dry-pulse height space.
Figure S1 and Table S1 summarize the uncertainty and also the precision, considered to be fractional uncer-
tainty (Taylor, 1982), associated with the DASH-SP as a function of Dp,dry and n. Of note is that there is a clear
separation between data for different salts at a fixed Dp,dry with the average precision being between 1% and
3% based on the salt across the entire range of Dp,dry values tested. A representative uncertainty of 0.006 was
derived for n based on Table S1 by (i) averaging the fractional uncertainty across allDp,dry values for individual
salts, (ii) taking an average of the overall fractional uncertainty for the six salts, and (iii) multiplying the latter

Figure 1. Spatial map of DC-8 flights (black trace) during Deep Convective Clouds and Chemistry (4 test, 18 research) and
Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (2 test, 21 research).
Colored markers represent measured DASH-SP n values. Locations are shown for biomass burning (BB) events from
wildfires and agriculture. The inset histogram shows the frequency of occurrence of different n values in 0.01 increments.

Table 1
Criteria Used for Defining Different Air Mass Types Based on the Work of Shingler, Crosbie, et al. (2016)

Air mass type Criteria

BB-Wildfire Acetonitrile > 250 pptv or (when acetonitrile unavailable) CO > 250 ppbv in nonurban areas
BB-Agricultural Same as BB-Wildfire with additional visual confirmation of crop burning
Biogenic Isoprene + monoterpenes + MVK + MACR > 2 ppbv and acetonitrile < 250 pptv
Marine In PBL; over ocean and greater than 40 km from the coast
Urban In PBL; spatially over Houston (30.50°N, �94.60°W to 29.00°N, �96.10°W) or Los Angeles

(34.17°N, �117.00°W to 33.44°N, �119.75°W)
Background In PBL; did not fit into first five categories
Free Troposphere (FT) Above PBL; did not fit into first five categories
Mix Fit into more than one of the first five categories

Note. BB = biomass burning, PBL = planetary boundary layer.
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result by the average n value for the six salts tested. This provides confidence in distinguishing between n
differences of 0.01 between the lower and upper limits of n reported in this study (1.42 and 1.61, respectively).

It is important to clarify that the n values retrieved by the DASH-SP should not be considered as true
values but rather effective values as this single parameter incorporates the roles of shape and absorbing
materials. Such a designation is often made for optically based instruments (e.g., Rosati et al., 2015;
Shingler, Crosbie, et al., 2016). The DASH-SP algorithm assumes that particles are spherical; however, dur-
ing calibrations, the cubic nature of NaCl is accounted for by using a dynamic shape factor of 1.08
(Hameri et al., 2001). Aerosol with a significant imaginary component k can impact the OPC scattering sig-
nal (e.g., Shingler, Crosbie, et al., 2016). More specifically, absorbing components can lead to an underes-
timate of n. Black carbon (BC) comprised a small fraction of the overall particle composition in DC3 and
SEAC4RS (mass fraction ≤ 2%; Perring et al., 2017; Shingler, Crosbie, et al., 2016; Sorooshian et al., 2017).
Furthermore, mean single scattering albedo (SSA) values at 550 nm, as derived from the Langley Aerosol
Research Group Experiment package described below, were within the range of values expected for
aged particles without strong absorptive properties (0.91–0.99) as compared to fresh wildfire emissions
(e.g., Corr et al., 2012): DC3 = 0.93 ± 0.04, SEAC4RS = 0.95 ± 0.02.
2.2.2. Other Instrumentation
Data from a number of other instruments were time synchronized with the DASH-SP. As part of the criteria
used for air mass categorization, gas-phase data were used from the proton transfer reaction-mass spectro-
meter (de Gouw & Warneke, 2007) for selected species, including methacrolein, methyl vinyl ketone, mono-
terpenes, isoprene, and acetonitrile. Carbon monoxide data were obtained with a folded-path, differential
absorption mid-IR diode laser spectrometer (Sachse et al., 1987). Nonrefractory composition for submicrom-
eter particles, including oxygen-to-carbon (O:C) and hydrogen-to-carbon (H:C) atomic ratios, was measured
with an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (Canagaratna et al., 2007;
DeCarlo et al., 2006). BC data were obtained with a humidified-dual single-particle soot photometer
(Schwarz et al., 2015). To assist with identifying the height of the planetary boundary layer, water vapor data
are used from the diode laser hygrometer (Diskin et al., 2002). Aerosol data were used from the Langley
Aerosol Research Group Experiment instrument package for both single scattering albedo (at 550 nm), as
measured by a TSI 3563 integrating nephelometer, and aerosol size distributions between diameters of 60 nm
and 1 μm using an ultra-high sensitivity aerosol spectrometer (Droplet Measurement Technologies, Inc.).

2.3. Modeling

To investigate the n-composition relationships in more depth, linear and nonlinear regression techniques
were used. The first modeling method was multiple linear regression (MLR) analysis, which describes the
dependence of a response on several independent variables:

byi ¼ β1 þ β2x2 þ…þ βnxn (1)

where byi , β1, and βn are the predicted response (i.e., n in this study), the intercept, and the regression coeffi-
cient of the predictor variables (i.e., xi), respectively.

In the second modeling approach, Gaussian process regression (GPR) was utilized to evaluate the perfor-
mance of a nonlinear technique for prediction of n. GPR is a convenient and powerful regression nonpara-
metric approach used in a diversity of fields ranging from biology to Earth sciences and chemical engineering
(e.g., Reggente et al., 2015; Wang et al., 2017). Unlike parametric approaches such as MLR, GPR is a probabil-
istic modeling approach with the ability to predict uncertainty of estimations (Rogers & Girolami, 2016).
Assuming a relationship of the form ni = f(xi) + ε between the predictors, xi, the response value, ni, and error

term, εn ¼ N 0; σ2ð Þ, GPR generates a joint multivariate Gaussian distribution over vectors of responses with
the mean of μ* and covariance matrix of Σ*. To obtain Σ*, we employed the rational quadratic kernel (RQK),
expressed as follows:

c xi; xj
� � ¼ σ2 1þ r2

2ασ2l

� ��α

(2)

RQK is derived as a scale mixture of squared exponential kernels of different length scales (Wilson & Adams,
2013), in which α is scale-mixture parameter, r is the Euclidean distance between xi and xj, and σl is the
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characteristic length scale that determines how fast the Gaussian Process function varies with the provided
input. The distribution of predicted values, f*, relies on σ2 and the observation values at the training points, ni.
The predictive conditional distribution p(f*| n, σ2) is expressed as follows (Rogers & Girolami, 2016):

p f �jn; σ2� � ¼ N μ�;Σ�ð Þ (3)

where

μ� ¼ RT C þ σ2IN
� ��1

n (4)

Σ� ¼ C� � RT C þ σ2IN
� ��1

R (5)

and I is the identity matrix with size of N × N, with N being the number of training sets and C being the covar-
iance matrix for the training sets:

C ¼
c x1; x1ð Þ … c x1; xNð Þ

⋮ … ⋮

c xN; x1ð Þ … c xN; xNð Þ

2
64

3
75 (6)

C* is the covariance matrix with size of L × L, where L is the number of testing data points for the testing set:

C� ¼
c x�1; x

�
1

� �
… c x�1; x

�
L

� �
⋮ … ⋮

c x�L ; x
�
1

� �
… c x�L ; x

�
L

� �
2
64

3
75 (7)

Finally, R is a N × L cross-covariance matrix, which evaluates the similarity between features of training and
testing points.

R ¼
c x1; x

�
1

� �
… c x1; x�L

� �
⋮ … ⋮

c xN; x�1
� �

… c xN; x�L
� �

2
64

3
75 (8)

The GPR RQK analysis was conducted using the Regression Learner application in MATLAB, with the addition
of k-fold cross validation (k = 5). This involved dividing the original data set randomly into five subsamples,
with one considered as the testing set for validating the model trained by the other four sets. This process
was repeated a total of five times with the results averaged at the end.

3. Results and Discussion
3.1. Cumulative Data
3.1.1. Air Mass Type Categorization of n
A spatial map of n values from DC3 and SEAC4RS is shown in Figure 1, while Table S2 reports descriptive sta-
tistics for each air mass type that are also visually summarized in Figure 2 in the form of a box-and-whisker
plot. The results reveal that although a wide range was observed (1.42–1.61), most n values were within a nar-
rower range, regardless of location and air mass type. The average andmedian n values for each air mass type
varied between 1.50–1.53 and 1.50–1.54, respectively. The Urban and BB-Wildfire air types exhibited the
highest median (1.54), while the FT air type exhibited the lowest median (1.50). The interquartile range
was narrowest for BB-Agricultural (0.01), with the widest range (0.03) for four other air types (Background,
FT, Marine, and Urban). The overall range of values was narrowest for the BB-Agricultural (0.08) category
and widest for the Biogenic and FT categories (0.19). There is a significant variability within a single air mass
type, which has implications for assuming a fixed value. As noted already, a 5% change in n can yield a ~30%
change in the radiative flux at the top of the atmosphere (Redemann, Turco, Liou, Hobbs, et al., 2000).

There are scarce reports of vertically resolved n values, especially as a function of air mass type. The results of
the limited reports from the literature reveal that there exist vertical layers with distinct n values (Ferrare et al.,
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1998; Redemann, Turco, Liou, Russell, et al., 2000). Knowledge of n variability with altitude is important for
whether assumptions of a constant columnar value are valid. Vertically resolved values of n are reported
for each air mass type in Figure 3. There is inhomogeneity in n values as a function of altitude within an air
mass type and especially high variability in the BB-Wildfire category. A series of case studies are
subsequently analyzed to examine the degree of vertical variability in fixed areas without mixing data
from numerous flights such as in Figure 3.

Table 2 reports values from other regions to place the values in this work in context. For those studies with n
data at the same wavelength as this study (532 nm), n values were similar. The ranges of values for BB-
Agricultural (1.49–1.56) and BB-Wildfire (1.43–1.61) were mostly in the range of those used in models and cal-
culations for biomass burning smoke aerosol (1.47–1.58) (Anderson et al., 1996; Dubovik et al., 2002; Lenoble,
1991; Westphal & Toon, 1991).
3.1.2. Application of the Linear Mixing Rule
While n values of pure species such as inorganic salts (NaCl, (NH4)2SO4) are well established, those for carbo-
naceous species are less certain, especially since values for OA species depend on precursor type, oxidation
pathway for formation, and aging of secondary organic aerosol (SOA) and particle growth (Cappa et al., 2011;
Flores et al., 2014; Kim et al., 2010, 2012; Kim & Paulson, 2013; Moise et al., 2015). In their review paper, Moise

Figure 2. Box-and-whisker summary of n values for each air mass type sampled during both Deep Convective Clouds and
Chemistry and Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys.
The lower (Q1) and upper quartile (Q3) are represented as the bottom and top bounds of the boxes, respectively, with the
ends of the lines representing the minimum and maximum values. Numbers of points in each category are as follows:
All = 19,303, Biomass Burning (BB)-Agricultural = 150, Background = 7,472, BB-Wildfire = 2,599, Biogenic = 5,234, Free
Troposphere = 1,981, Marine = 500, Urban = 407, and Mix = 960.

Figure 3. Vertical profile of n for dry aerosol sampled during both Deep Convective Clouds and Chemistry and Studies of
Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys as a function of air mass type.
Black lines represent averages, and borders of the red shading represent one standard deviation. BB = biomass burning.
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et al. (2015) showed that n for SOA ranges from 1.35 to 1.6. Here we use the field data set to derive values for
nOA to then compare to other reported values in the literature, which are mostly from controlled
laboratory experiments.

Perhaps the simplest way to predict n for multicomponent particles is a linear average of n values of each
pure component weighted by its respective volume fraction, as shown in equation (9) (e.g., Redmond &
Thompson, 2011; Seinfeld & Pandis, 2016; Sokolik & Toon, 1999):

n ¼ ∑ϕini (9)

where ϕi represents the volume fraction of each component i. Individual volume fractions are calculated as
follows using knowledge of the mass concentration and density of each species considered:

ϕi ¼
mi
ρi

∑ mi
ρi

(10)

This sort of volume-weighted mixing rule, which is empirical in nature, is applied in general circulation mod-
els to quantify radiative forcing of internally mixed aerosols (e.g., Haywood et al., 1997; Myhre et al., 1998).
This approach assumes that particles are uniformly internally mixed. In contrast to other mixing rules (e.g.,
Maxwell-Garnett rule, extended effective medium approximation), a simple linear mixing rule was shown
to be the best predictor of n for non-absorbing materials in past work relying on cavity ring-down spectro-
scopy (Abo Riziq et al., 2007). That work also showed that for aerosol with a small volume fraction of absorb-
ing substances, all mixing rules yielded similar results.

Using volume fractions relies on assumptions about both density and n values for individual aerosol con-
stituents. Representative values used in past work are summarized in Table 3. One of the largest uncer-
tainties in Table 3 is the n value associated with OA. Rather than use a volume-weighted mixing rule
to derive a predicted n value, an alternative approach applied here is to use the measured n value in
Equation (9) to back-calculate a value for nOA. The current data set allows for such an investigation with
the cautionary note that only bulk aerosol composition data for submicrometer aerosol are used. While

Table 2
Values of the Real Part of Dry Aerosol Refractive Index (n) Reported for Other Regions

Region n (wavelength) Reference

United States Eastern Seaboard 1.33–1.45 (815 nm) Redemann, Turco, Liou, Russell, et al. (2000)
Big Bend National Park (southwest Texas) 1.566 ± 0.12 (632.8 nm) Hand and Kreidenweis (2002)
Southern Great Plains ARM site (Oklahoma) 1.4–1.5 (351, 530, and 1,069 nm) Ferrare et al. (1998)
Cuiaba, Brazil (smoke influence) 1.53–1.59 (438–1,020 nm) Yamasoe et al. (1998)
Beijing, China 1.50–1.53 (532 nm) Li and Mao (1990)
Paris, France 1.51 ± 0.02 (532 nm) Raut and Chazette (2008)
European plumes over Atlantic Ocean 1.56 ± 0.07 (532 nm); range: 1.45–1.67 Muller et al. (2002)
Bovine source in California 1.48–1.51 (532 nm) Sorooshian, Murphy, et al. (2008)
Northwest China 1.47–1.55 (400, 500, 675, 870, and 1,220 nm) Liu et al. (2008)

Table 3
Values of n and Density (ρ) Assigned to Various Aerosol Constituents in Past Studies

Constituent n Reference ρ (g/cm3) Reference

Black Carbon 1.960 Hand and Kreidenweis (2002) 2.000 Hand and Kreidenweis (2002)
Organic aerosol 1.550 Zhang et al. (1994) and Hand and Kreidenweis (2002) 1.400 Dick et al. (2000) and Hand and Kreidenweis (2002),

and Gysel et al. (2007)
(NH4)2SO4 1.530 Zhang et al. (1994), Tang (1996), and Hand and Kreidenweis (2002) 1.769 Gysel et al. (2007)
NH4HSO4 1.473 Tang (1996) 1.780 Tang (1996) and Gysel et al. (2007)
H2SO4 1.408 Hand and Kreidenweis (2002) 1.830 Gysel et al. (2007)
NH4NO3 1.554 Tang (1996) 1.720 Gysel et al. (2007)
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size-resolved composition data were collected, the signal-to-noise ratio for this particular data set is too
limited to inform our analyses. However, the averaged size distributions suggest internally mixed aerosol,
except in fresh biogenic plumes. Lastly, this analysis assumes all non-OA species not shown in Table 3 are
consumed in the value of nOA.

An ion pairing technique (e.g., Gysel et al., 2007) was used to obtain values for volume fractions for inorganic
constituents (ammonium nitrate, sulfuric acid, ammonium bisulfate, and ammonium sulfate) using data from
the high-resolution time-of-flight aerosol mass spectrometer. Additionally, OA and BC constituted two sepa-
rate categories. Data for densities and n values for pure aerosol constituents from Table 3 were applied to
equations (9) and (10) with the exception of nOA. Additionally, OA density was calculated using the following
formula (Kuwata et al., 2012):

ρOA ¼ 1; 000
12þ 1 H : Cð Þ þ 16 O : Cð Þ½ �
7þ 5 H : Cð Þ þ 4:15 O : Cð Þ½ � (11)

Table 4 shows that the value of nOA is 1.52 ± 0.03 for the cumulative data set, with a mean value varying
between 1.50 and 1.59 for individual air mass types. With the exception of the Marine category, which
exhibited a relatively smaller sample set (N = 200) and exhibited high variability (standard devia-
tion = 0.04), values for the other air mass types and the cumulative data set were less than the 1.55 value
reported in Table 3 in past work. To put the nOA values from Table 4 in more context, the range of n
values for SOA (1.35–1.60) reported in the review study by Moise et al. (2015) encompasses the mean
and median values derived in this work for nOA. Controlled experiments have provided values for bio-
genic SOA (1.44) and anthropogenic SOA (1.55) at 532 nm (Kim & Paulson, 2013), which is consistent with
how the mean nOA for the Urban air type (1.54) exceeded that of the Biogenic type (1.52). Redmond and
Thompson (2011) reported n values of 1.49–1.51 and 1.49–1.50 at 532 nm for SOA generated from
α-pinene and toluene, respectively.

The oxygen-to-carbon (O:C) atomic ratio of OA is often used as a proxy for oxidation state of OA, where
conflicting results exist in the literature with n both decreasing and increasing as a function of O:C ratio
for various organic systems (Moise et al., 2015). For example, He et al. (2018) observed an increase fol-
lowed by a reduction in nOA as a function of the O:C ratio for SOA derived from precursors such as
p-xylene and β-pinene. In contrast, Cappa et al. (2011) showed that n increased with oxidation lifetime
for squalene (proxy for primary OA) and azelaic acid (proxy for oxidized OA) from 1.49 to 1.54 and 1.48
to 1.55, respectively. The relationship between nOA and the O:C ratio for the cumulative data set is sum-
marized in Figure 4. Data from the Moise et al. (2015) review study are also shown to demonstrate that
the variability observed in the atmosphere during DC3 and SEAC4RS was similar to that observed in SOA
laboratory studies. Owing to considerable scatter, the O:C data were also represented as decile averages
to illuminate potential hidden trends. Owing to the lack of strong dependence of nOA on the O:C ratio, a
value of 1.52 is suggested here as a good approximation for nOA. While not a strong feature, an interest-
ing aspect of the decile average representation in Figure 4 is that there is slight decreasing trend in nOA
above an O:C ratio of 0.60. Others have also observed decreases in nOA as a function of the O:C ratio in

Table 4
A Summary of nOA Values Retrieved Using the Linear Mixing Rule as a Function of Air Mass Type for the Cumulative Data Set

All BB-Agric Background BB-Wildfire Biogenic Free trop. Marine Urban Mix

Mean 1.52 1.52 1.51 1.53 1.52 1.50 1.59 1.54 1.52
St. dev. 0.03 0.01 0.03 0.03 0.02 0.03 0.04 0.03 0.02
Maximum 1.66 1.56 1.66 1.61 1.65 1.65 1.66 1.65 1.65
Minimum 1.39 1.43 1.40 1.41 1.41 1.39 1.47 1.47 1.44
Third quartile (75th percentile) 1.53 1.53 1.53 1.54 1.54 1.52 1.62 1.55 1.53
Median (50th percentile) 1.52 1.52 1.51 1.53 1.52 1.50 1.59 1.54 1.52
First quartile (25th percentile) 1.50 1.52 1.49 1.51 1.51 1.48 1.56 1.52 1.51
Count 16,689 118 6,427 2,201 4,905 1,938 200 225 675

Note. BB = biomass burning.
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the same general O:C range for OA derived from precursors such as naphthalene and tricyclo[5.2.1.02,6]
decane (Lambe et al., 2013).

An uncertainty analysis analogous to that of Mei et al. (2013) for the derivation of organic hygroscopicity
was conducted here for the derivation of nOA to quantify the contributions to total uncertainty from
values of n and volume fractions of participating species. Refer to the supporting information for the deri-
vation of the equations used to summarize the uncertainty results in Figure S2. The uncertainty in the
derivation of nOA using the mixing rule decreased rapidly with increasing volume fraction of OA. As
the mean and median of mass fraction (MF) of OA (MFOA) were 0.63 and 0.65, respectively, for the cumu-
lative data set, this points to reduced uncertainty in the derived nOA values in this study. Since the uncer-
tainty in nOA values decreased as a function of contributions by OA using the linear mixing rule, it was of
interest to examine the same relationship from Figure 4 when data were filtered for MFOA > 0.60 (~40%
of valid points; Figure S3) and MFOA > 0.80 (~10% of valid points; Figure S4). The key characteristic from
Figure 4 still preserved in Figures S3 and S4 is that an approximate value of 1.52 (mean value for “All” in
Table 5) for nOA is robust and that the relationships in Figures 4 and S3–S4 are intrinsic to OA and not
caused by other uncertainties feeding in through the mixing rule.

As shown in the review study of Moise et al. (2015), the trend in nOA with O:C could vary with source as
revealed by results from various laboratory studies of biogenic and anthropogenic SOA. To examine this

in greater detail with the field data set, a number of case studies
are examined in the next section to determine what the depen-
dence is of nOA on both the O:C and H:C ratios of OA, with the lat-
ter being higher for less oxidized aerosols (including
primary aerosols).

3.2. Case Studies

A series of case studies are examined here that exhibited signifi-
cant correlations between n and composition, using the MFOA as
a representative proxy for composition. For each case study, the
spatial variability of n and nOA is reported, in addition to how
nOA is related to the two chemical ratios (O:C and H:C) represen-
tative of the OA fraction of aerosols. Lastly, the skill of parametric
and nonparametric modeling approaches in predicting n using
chemical data is assessed. While several case studies are noted
below as having characterized vertical structure, there was still
a horizontal variability owing to the aircraft often conducting
slant soundings.

Figure 4. Relationship between nOA and the O:C ratio of the organic aerosol fraction of the aerosol for the cumulative data
set. The standard error on the mean quantile points is too small to see. Also shown are data for various secondary organic
aerosol systems from Figure 8 of the review study of Moise et al. (2015).

Table 5
Summary of Model Performance Based on Adjusted R2 Values Using Gaussian
Process Regression Rational Quadratics Kernel (GPR RQK) and Multiple Linear
Regression (MLR) to Predict n with the Following Chemical Parameters: MFOA,
MFnitrate, MFsulfate, MFammonium, MFchloride, MFBC, and the O:C and H:C ratios of
Organic Aerosol

Case MLR GPR RQK

Cumulative data set (Figures 1–3) 0.21 0.61
S. California (Figure 5) 0.16 �0.04
Fort Worth (Figure 6) 0.64 0.48
Houston (Figure 7) 0.54 0.58
Wyoming 1 (Figure 8) 0.72 0.71
Wyoming 2 (Figure 9) 0.45 0.48
Kansas (Figure 10) 0.96 0.80

Note. Note that a negative R2 value for GPR RQK means that the trained model
performs more poorly than the model where the response is constant and
equals the mean of the training response. MF = mass fraction.
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3.2.1. Boundary Layer Variability Across Southern California
A unique opportunity presented itself during the 23 September 2013 flight to conduct a low altitude transect
(335 m ± 44 m) across a large section of southern California extending from El Centro, over the Salton Sea,
through Banning pass, and finishing near Pasadena (Figure 5; 16:08–16:41 local time). The results show a gen-
eral reduction of n moving from east (up to 1.54) to west (down to 1.49), which reflects a transition from
Background air in the eastern part of the transect to Urban air in the Los Angeles Basin (Figure 5a).
Shingler, Crosbie, et al. (2016) previously showed for the same transect that subsaturated aerosol hygrosco-
picity similarly decreased from east to west, coincident with enhancements in MFOA and reductions in the O:C
ratio. More specifically, in the outflow region to the east of the Los Angeles Basin (i.e., east of �117.00°W),
considered as Background air, the average MFOA and O:C ratios were 0.61 ± 0.08 and 0.85 ± 0.28,

Figure 5. Transect during a Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional
Surveys flight on 23 September 2013 (16:08–16:41 local time) across southern California showing (a) variability in n at
relatively fixed altitude (0.34 ± 0.04 km) and Dp,dry (195 nm). The two major air mass types sampled for the majority of the
sounding were Background and Urban. The arrow signifies the direction of aircraft movement. The inset plot shows the
relationship between n and mass fraction of organic aerosol (MFOA). (b) Same as (a) but for nOA and with the inset plot
showing how nOA depends on the O:C and H:C ratios of organic aerosol.
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respectively. In contrast, the average MFOA and O:C ratios in the Urban area inside the Los Angeles Basin were
0.80 ± 0.01 and 0.53 ± 0.04. There was an inverse relationship betweenMFOA and n (r = 0.46; Figure 5a). Values
of nOA during this case study varied from 1.47 to 1.58, with a reduction in value toward the west (Figure 5b).
The O:C (H:C) ratio was positively (negatively) related to nOA.
3.2.2. Vertical Structure Over Fort Worth, Texas
On 16 August 2013, the aircraft conducted a downward sounding to the west of the Dallas-Fort Worth metro-
politan area in north Texas, with a portion of interest shown between 16:26 and 16:35 (local time) in Figure 6.
During the descent from 2.91 to 1.04 km, values of n decreased from as high as 1.48 to as low as 1.42 while
sampling, in order, FT and Background air mass types. Similar to the last case, OA comprised the majority of
the submicrometer mass concentration; however, unlike the previous case, n was positively correlated with
MFOA (r = 0.81). The reason for the opposite sign of the relationship between n and MFOA is not obvious but
likely is linked to the overall make-up of the rest of the aerosol constituents and the nature of the OA itself.
Values of nOA decreased from 1.47 at the higher altitudes to as low as 1.41 at the lower altitudes. Similar to the
previous case, nOA was positively (negatively) correlated with the O:C (H:C) ratio.
3.2.3. Vertical Structure Over Houston, Texas
A vertical profile was conducted on the same flight as the last case (16 August 2013; 17:34–17:46 local time)
farther south to the west of Houston, Texas (Figure 7). Aspects of this profile were very similar to the one in
north Texas, in that n increased with altitude (1.45–1.51 from 1.29 to 4.23 km) as the aircraft sampled the
same two air mass types (Background, FT). The submicrometer chemical profile was again dominated by
OA, and a strong relationship was observed between n and MFOA (r = 0.97). Values of nOA increased from
1.44 at the lower altitudes to as high as 1.49 at the higher altitudes. Similar to the previous two cases, nOA
was positively (negatively) correlated with the O:C (H:C) ratio.
3.2.4. Vertical Structure Over Northeastern Wyoming
Two separate cases are examined from a flight on 19 August 2013 over northeastern Wyoming. The first
case (12:03–12:36) extended from 0.30 to 2.34 km and was characterized by an increase in n with altitude
(1.52–1.57; Figure 8). This case included influence from Background, BB-Wildfire, and Biogenic air masses;
consequently, OA was a major component (MFOA = 0.84 ± 0.09). The second case (12:49–13:12) extended
between 2.52 and 4.12 km, with a general increase in n with altitude (1.55 to 1.60) (Figure 9). The air mass
types examined included FT and BB-Wildfire. Again, the composition was dominated by OA, and this case
in particular was the most polluted of all cases with an average submicrometer mass concentration
of 43.0 ± 25.7 μg/m3.

Values of n and MFOA were positively correlated in both Figures 8a and 9a. Values of nOA increased with alti-
tude in both cases (1.51 to 1.56 in Figure 8b; 1.55–1.60 in Figure 9b). Unlike the other case studies examined,

Figure 6. Same as Figure 5 but for a vertical profile (1.04–2.91 km) during a Studies of Emissions and Atmospheric
Composition, Clouds and Climate Coupling by Regional Surveys flight on 16 August 2013 (16:26–16:35 local time) near
the Texas-Oklahoma border to the west of the Dallas-Fort Worth metropolitan area. Values of Dp,dry ranged from 191 to
218 nm. Two air mass types were sampled (Background and Free Troposphere).
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the two case studies in Figures 8 and 9 exhibited negative (positive) relationships between nOA and the O:C
(H:C) ratio. Although the exact reason is unclear with the given data set, important features of these two cases
included BB-Wildfire influence and the highest overall MFOA values.
3.2.5. Vertical Structure Over Kinsley, Kansas
The last case examined was from 19 August 2013 (15:22–15:20) when the aircraft examined a column
between 0.58 and 3.27 km near Kinsley, Kansas. Values of n increased again with altitude (1.45 to 1.52) during
a period where the submicrometer mass was dominated again by OA and the following three air mass types
were probed: Background, BB-Wildfire, and FT. Similar to most of the previous cases, n and MFOA were posi-
tively correlated. Values of nOA increased with altitude from 1.44 to 1.52, with nOA being positively (nega-
tively) correlated with the O:C (H:C) ratio.
3.2.6. Summary of Case Studies
Significant changes in n were observed in each case study discussed, emphasizing the importance of having
high spatial resolution measurements of this important parameter. The overall ranges in n for the six cases
varied from as low as 0.05 (Figure 9) to as high as 0.08 (Figure 10). Similarly, derived values of nOA varied
between as low as 0.05 (Figure 8) to as high as 0.11 (Figure 5). All cases examining vertical variability
(Figures 6–10) revealed that n and nOA increased with altitude, with the common chemical feature being
coincident enhancements in MFOA and thus reductions in the contribution of inorganic species. The one case
not showing a positive correlation between n and MFOA was from southern California (Figure 5), with a
unique feature in that case being that it was characterized by the lowest overall O:C ratio (0.64 ± 0.22). As
the O:C ratio was generally positively correlated with nOA (and thus n) in all cases (except when there was
BB-Wildfire), systematically lower values in the southern California case may be linked to why n did not reveal
a positive correlation with MFOA. The differing correlations in the case studies indicate that trends exist but
vary between various types of OA and precursor sources. Future work using a coordinated approach to char-
acterize composition and volatility of OA can help better constrain the relationship between n and SOA com-
position, as suggested by Moise et al. (2015).

In order to examine how well parametric (i.e., MLR) and nonparametric approaches (i.e., GPR RQK) can predict
n, Table 5 summarizes model performance, based on adjusted R2 values, with predictor variables beingMFOA,
MFnitrate, MFsulfate, MFammonium, MFchloride, MFBC, and the O:C and H:C ratios of OA. The analysis was done for
each case study and the cumulative data set. Mass fractions were used rather than volume fractions to cir-
cumvent errors associated with application of the ion pairing technique and assumptions of densities.
Furthermore, the use of mass fractions here is meant to be for more practical use based on typical data avail-
able from field instruments measuring composition. For the cumulative data set, GPR RQK yielded higher

Figure 7. Same as Figure 5 but for a vertical profile (1.29–4.23 km) during a Studies of Emissions and Atmospheric
Composition, Clouds and Climate Coupling by Regional Surveys flight on 16 August 2013 (17:34–17:46 local time) over
southeast Texas. Values of Dp,dry ranged from 204 to 240 nm. Two air mass types were sampled (Background and Free
Troposphere). MFOA = mass fraction of organic aerosol.
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adjusted R2 values than MLR, in contrast to most of the individual cases as the latter cases were characterized
by a smaller sample size; GPR RQK benefits from having larger sample sets to use for training the model.
Unlike the cumulative data set, the results indicate that a linear model can yield fairly good performance
in predicting n for simple case studies, with adjusted R2 values ranging between 0.45 and 0.96. Other work
has shown that at least for the organic fraction of aerosol, models relying on quantitative structure-
property relationships (Redmond & Thompson, 2011) and group contribution approaches are promising
(Cai et al., 2017). However, these methods require information about the aerosol that is difficult to obtain
for the complex organic fraction of ambient aerosol with field measurements, such as molecular formula,
chemical functionality, and density.

3.3. Sensitivity of AOD and Radiative Forcing to n

To place the variability in n values reported above in perspective, sensitivity calculations were performed
for AOD in response to n perturbations between 1.42 and 1.60 for each air mass type. The calculations

Figure 8. Vertical profile (0.30–2.34 km) during a Studies of Emissions and Atmospheric Composition, Clouds and Climate
Coupling by Regional Surveys flight on 19 August 2013 (12:03–12:36 local time) over northeastern Wyoming. Values of Dp,
dry ranged from 244 to 267 nm. Three air mass types were sampled (Background, Biomass Burning (BB)-Wildfire, and
Biogenic). The arrow signifies the direction of the aircraft. MFOA = mass fraction of organic aerosol.

Figure 9. Spatial profile during a Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by
Regional Surveys flight on 19 August 2013 (12:49–13:12 local time) over northeastern Wyoming. Values of Dp,dry ranged
from 271 to 288 nm. Two air mass types were sampled (Biomass Burning (BB)-Wildfire and Free Troposphere). The arrow
signifies the direction of the aircraft. MFOA = mass fraction of organic aerosol.
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were initialized with the average aerosol size distribution measured for each air mass type in DC3 and
SEAC4RS using the ultra-high sensitivity aerosol spectrometer for a path length of 2 km, which is a typical
planetary boundary layer depth in the sampled areas (Wagner et al., 2015). The sensitivity results are the
same with longer path lengths. Calculations were conducted with and without consideration of an ima-
ginary component of 0.05, and they assume spherical particles. Mie calculations relied on the function

“Mie_abcd” in MATLAB (Mätzler, 2002). The sensitivity of top of the
atmosphere radiative forcing to n perturbations is similar to the sensitiv-
ity of AOD for the small values of AOD considered, as shown in other
works (Redemann, Turco, Liou, Hobbs, et al., 2000; Thorsen & Fu,
2015). For example, Redemann, Turco, Liou, Hobbs, et al. (2000) showed
that a 10% perturbation in AOD resulted in a ~10% error in top of the
atmosphere forcing.

Figure 11 shows an enhancement of AOD as a function of n, with the high-
est overall values for the two BB categories and the lowest values for the FT
and Marine air types. In terms of sensitivity, a perturbation of 0.01 in n
results in a change of AOD ranging from 2.3% to 4.7%, depending on
the aerosol type and the initial n value. The relative magnitudes of the sen-
sitivities between air mass types (i.e., one type being higher or lower than
another type) are preserved when considering a fixed imaginary compo-
nent of 0.05. Perturbations of 0.05 in n result in AOD changes between
12.9% and 23.8% without an imaginary component and between 11.1%
and 18.2% with a 0.05 imaginary component. Finally, the percent change
in AOD (and radiative forcing), without assuming an imaginary compo-
nent, between the minimum and maximum values for each air mass type
is as follows in increasing order: 25.0% (BB-Agricultural), 41.9% (Marine),
55.0% (Urban), 88.2% (FT), 89.8% (BB-Wildfire), 92.6% (Background), and
96.8% (Biogenic). These results motivate improved predictive capabilities
for this complex aerosol property.

Figure 10. Vertical profile (0.58–3.27 km) during a Studies of Emissions and Atmospheric Composition, Clouds and Climate
Coupling by Regional Surveys flight on 19 August 2013 (15:22–15:29 local time) near Kinsley, Kansas. Values of Dp,dry
ranged from 199 to 228 nm. Three air mass types were sampled (Background, Biomass Burning (BB)-Wildfire, and Free
Troposphere). The arrow signifies the direction of the aircraft. MFOA = mass fraction of organic aerosol.

Figure 11. Sensitivity of aerosol optical depth (AOD) to n values using
average aerosol size distribution for each air mass type shown for a path
length of 2 km, which is representative of the typical planetary boundary
layer depth. Note that free troposphere aerosol would be higher in altitude
but are treated the same for the purposes of the calculations. Two y axes are
used to separate the biomass burning (BB) categories that exhibited much
higher AOD values than other air mass types.
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While outside the scope of the current work, it is noteworthy to add that the optical sizing instruments are
highly sensitive to n values used as part of their algorithms. Using the DASH-SP as just one example, Dp,dry

can change by nearly a factor of 2 across the range of n values (1.40 to 1.60) typically used in its retrieval algo-
rithm for a representative OPC pulse height distribution (see also Figure 7 of Shingler, Sorooshian,
et al., 2016).

4. Conclusions

This study reports a characterization of n using airborne data from the surface level up to 12-km altitude for
two field campaigns over North America (DC3 and SEAC4RS). The main results of this study include the
following:

1. The real part of the refractive index (n), at 532 nm, for dry particles ranged from 1.42 to 1.61 during these
campaigns and exhibited mean and median values for the eight defined air mass types between 1.50–
1.53 and 1.50–1.54, respectively.

2. Values of n for the OA fraction (nOA) were calculated using a linear mixing rule, with a characteristic value
of 1.52 shown to be suitable for nOA when examining the cumulative data set.

3. Case studies showed that n and nOA increased with altitude, simultaneous with MFOA enhancements.
Values of nOA were positively (negatively) correlated with the O:C (H:C) ratio in the absence of biomass
burning influence.

4. MLR was shown to exhibit decent skill in predicting n based on aerosol chemical data for several case stu-
dies. In contrast, GPR was shown to be most effective at predicting n for the cumulative data set.

5. A sensitivity analysis conducted showed that assumptions of constant n values for a single column or for a
specific air mass types can lead to a significant error. For example, it was shown that the percent change in
AOD (and radiative forcing), without an imaginary component, between the minimum and maximum
values for each air mass type ranged from 25.0% (BB-Agricultural) to 96.8% (Biogenic). Previous studies
have shown that optical sizing instruments are similarly sensitive to n perturbations.

The results of this study motivate future effort to advance knowledge of the n parameter with the goal of
improving its treatment in remote sensing retrievals, modeling, and optical sizing instruments.
Furthermore, this study was limited in examining effective n values that include the influence of shape
and absorbing materials, and future work would benefit from untangling the effects of those factors in char-
acterization of airborne n data.

References
Abo Riziq, A., Erlick, C., Dinar, E., & Rudich, Y. (2007). Optical properties of absorbing and non-absorbing aerosols retrieved by cavity ring

down (CRD) spectroscopy. Atmospheric Chemistry and Physics, 7(6), 1523–1536. https://doi.org/10.5194/acp-7-1523-2007
Anderson, B. E., Grant, W. B., Gregory, G. L., Browell, E. V., Collins, J. E., Sachse, G. W., et al. (1996). Aerosols from biomass burning over the

tropical South Atlantic region: Distributions and impacts. Journal of Geophysical Research, 101(D19), 24,117–24,137. https://doi.org/
10.1029/96JD00717

Barth, M. C., Cantrell, C. A., Brune, W. H., Rutledge, S. A., Crawford, J. H., Huntrieser, H., et al. (2015). The Deep Convective Clouds and Chemistry
(DC3) field campaign. Bulletin of the American Meteorological Society, 96(8), 1281–1309. https://doi.org/10.1175/Bams-D-13-00290.1

Cai, C., Marsh, A., Zhang, Y., & Reid, J. P. (2017). A group contribution approach to predict the refractive index of pure organic components in
ambient organic aerosol. Environmental Science & Technology, 51(17), 9683–9690. https://doi.org/10.1021/acs.est.7b01756

Canagaratna, M. R., Jayne, J. T., Jimenez, J. L., Allan, J. D., Alfarra, M. R., Zhang, Q., et al. (2007). Chemical and microphysical characterization of
ambient aerosols with the aerodyne aerosol mass spectrometer. Mass Spectrometry Reviews, 26(2), 185–222. https://doi.org/10.1002/
mas.20115

Cappa, C. D., Che, D. L., Kessler, S. H., Kroll, J. H., & Wilson, K. R. (2011). Variations in organic aerosol optical and hygroscopic properties upon
heterogeneous OH oxidation. Journal of Geophysical Research, 116, D15204. https://doi.org/10.1029/2011JD015918

Chin, M., Ginoux, P., Kinne, S., Torres, O., Holben, B. N., Duncan, B. N., et al. (2002). Tropospheric aerosol optical thickness from the GOCART
model and comparisons with satellite and sun photometer measurements. Journal of the Atmospheric Sciences, 59(3), 461–483. https://doi.
org/10.1175/1520-0469(2002)059<0461:Taotft>2.0.Co;2

Corr, C. A., Hall, S. R., Ullmann, K., Anderson, B. E., Beyersdorf, A. J., Thornhill, K. L., et al. (2012). Spectral absorption of biomass burning aerosol
determined from retrieved single scattering albedo during ARCTAS. Atmospheric Chemistry and Physics, 12(21), 10,505–10,518.

de Gouw, J., & Warneke, C. (2007). Measurements of volatile organic compounds in the Earth’s atmosphere using proton-transfer-reaction
mass spectrometry. Mass Spectrometry Reviews, 26(2), 223–257. https://doi.org/10.1002/mas.20119

DeCarlo, P. F., Kimmel, J. R., Trimborn, A., Northway, M. J., Jayne, J. T., Aiken, A. C., et al. (2006). Field-deployable, high-resolution, time-of-flight
aerosol mass spectrometer. Analytical Chemistry, 78(24), 8281–8289. https://doi.org/10.1021/ac061249n

Dick, W. D., Saxena, P., & McMurry, P. H. (2000). Estimation of water uptake by organic compounds in submicron aerosols measured during
the Southeastern Aerosol and Visibility Study. Journal of Geophysical Research, 105(D1), 1471–1479. https://doi.org/10.1029/
1999JD901001

10.1029/2018JD028504Journal of Geophysical Research: Atmospheres

ALDHAIF ET AL. 8297

Acknowledgments
All data from DC3 (doi:10.5067/Aircraft/
DC3/DC8/Aerosol-TraceGas) and
SEAC

4
RS (doi:10.5067/Aircraft/SEAC4RS/

Aerosol-TraceGas-Cloud) are publicly
available from the NASA Langley
Research Center Atmospheric Science
Data Center: https://www-air.larc.nasa.
gov/missions/dc3-seac4rs/index.html
and https://www-air.larc.nasa.gov/
missions/seac4rs/, respectively. This
research was funded by National
Aeronautics and Space Administration
grants NNX12AC10G and NNX14AP75G.
The development of the DASH-SP
instrument was funded by United States
Navy Office of Naval Research grant
N00014-10-1-0811. T. S. acknowledges
support from a NASA Earth and Space
Science Fellowship (NNX14AK79H). P. C.
J., D. A. D., and J. L. J. were supported by
NASA grants NNX12AC03G and
NNX15AT96G. Proton transfer reaction-
mass spectrometry measurements were
supported by the Austrian Federal
Ministry for Transport, Innovation and
Technology (bmvit) through the
Austrian Space Applications
Programme (ASAP) of the Austrian
Research Promotion Agency (FFG). A. W.
and T. M. received support from the
Visiting Scientist Program at the
National Institute of Aerospace (NIA).
Anne Perring and Joshua Schwarz are
acknowledged for the humidified-dual
single-particle soot photometer data.
Andreas Beyersdorf is acknowledged for
collection of the Langley Aerosol
Research Group Experiment data. Yinon
Rudich and Michel Flores are acknowl-
edged for sharing data from Moise et al.
(2015).

https://doi.org/10.5194/acp-7-1523-2007
https://doi.org/10.1029/96JD00717
https://doi.org/10.1029/96JD00717
https://doi.org/10.1175/Bams-D-13-00290.1
https://doi.org/10.1021/acs.est.7b01756
https://doi.org/10.1002/mas.20115
https://doi.org/10.1002/mas.20115
https://doi.org/10.1029/2011JD015918
https://doi.org/10.1175/1520-0469(2002)059%3C0461:Taotft%3E2.0.Co;2
https://doi.org/10.1175/1520-0469(2002)059%3C0461:Taotft%3E2.0.Co;2
https://doi.org/10.1175/1520-0469(2002)059%3C0461:Taotft%3E2.0.Co;2
https://doi.org/10.1002/mas.20119
https://doi.org/10.1021/ac061249n
https://doi.org/10.1029/1999JD901001
https://doi.org/10.1029/1999JD901001
https://www-air.larc.nasa.gov/missions/dc3-seac4rs/index.html
https://www-air.larc.nasa.gov/missions/dc3-seac4rs/index.html
https://www-air.larc.nasa.gov/missions/seac4rs/
https://www-air.larc.nasa.gov/missions/seac4rs/


Diskin, G. S., Podolske, J. R., Sachse, G. W., & Slate, T. A. (2002). Open-path airborne tunable diode laser hygrometer. In A. Fried (Ed.), Diode
lasers and applications in atmospheric sensing, Proc. Soc. Photo-Optical Instrum. Eng., (Vol. 4817, pp. 196–204). https://doi.org/10.1117/
12.453736

Dubovik, O., Holben, B., Eck, T. F., Smirnov, A., Kaufman, Y. J., King, M. D., et al. (2002). Variability of absorption and optical properties of key
aerosol types observed in worldwide locations. Journal of the Atmospheric Sciences, 59(3), 590–608. https://doi.org/10.1175/1520-
0469(2002)059<0590:Voaaop>2.0.Co;2

Ferrare, R. A., Melfi, S. H., Whiteman, D. N., Evans, K. D., Poellot, M., & Kaufman, Y. J. (1998). Raman lidar measurements of aerosol extinction
and backscattering—2. Derivation of aerosol real refractive index, single-scattering albedo, and humidification factor using Raman lidar
and aircraft size distribution measurements. Journal of Geophysical Research, 103(D16), 19,673–19,689. https://doi.org/10.1029/98JD01647

Flores, J. M., Zhao, D. F., Segev, L., Schlag, P., Kiendler-Scharr, A., Fuchs, H., et al. (2014). Evolution of the complex refractive index in the UV
spectral region in ageing secondary organic aerosol. Atmospheric Chemistry and Physics, 14(11), 5793–5806. https://doi.org/10.5194/acp-
14-5793-2014

Guyon, P., Boucher, O., Graham, B., Beck, J., Mayol-Bracero, O. L., Roberts, G. C., et al. (2003). Refractive index of aerosol particles over the
Amazon tropical forest during LBA-EUSTACH 1999. Journal of Aerosol Science, 34(7), 883–907. https://doi.org/10.1016/S0021-
8502(03)00052-1

Gysel, M., Crosier, J., Topping, D. O., Whitehead, J. D., Bower, K. N., Cubison, M. J., et al. (2007). Closure study between chemical composition
and hygroscopic growth of aerosol particles during TORCH2. Atmospheric Chemistry and Physics, 7(24), 6131–6144. https://doi.org/
10.5194/acp-7-6131-2007

Hameri, K., Laaksonen, A., Vakeva, M., & Suni, T. (2001). Hygroscopic growth of ultrafine sodium chloride particles. Journal of Geophysical
Research, 106(D18), 20,749–20,757. https://doi.org/10.1029/2000JD000200

Hand, J. L., & Kreidenweis, S. M. (2002). A new method for retrieving particle refractive index and effective density from aerosol size distri-
bution data. Aerosol Science and Technology, 36(10), 1012–1026. https://doi.org/10.1080/02786820290092276

Haywood, J. M., Roberts, D. L., Slingo, A., Edwards, J. M., & Shine, K. P. (1997). General circulation model calculations of the direct radiative
forcing by anthropogenic sulfate and fossil-fuel soot aerosol. Journal of Climate, 10(7), 1562–1577. https://doi.org/10.1175/1520-
0442(1997)010<1562:Gcmcot>2.0.Co;2

He, Q. F., Bluvshtein, N., Segev, L., Meidan, D., Flores, J. M., Brown, S. S., et al. (2018). Evolution of the complex refractive index of secondary
organic aerosols during atmospheric aging. Environmental Science & Technology, 52(6), 3456–3465. https://doi.org/10.1021/acs.
est.7b05742

Hersey, S. P., Craven, J. S., Metcalf, A. R., Lin, J., Lathem, T., Suski, K. J., et al. (2013). Composition and hygroscopicity of the Los Angeles aerosol:
CalNex. Journal of Geophysical Research: Atmospheres, 118, 3016–3036. https://doi.org/10.1002/jgrd.50307

Hersey, S. P., Craven, J. S., Schilling, K. A., Metcalf, A. R., Sorooshian, A., Chan, M. N., et al. (2011). The Pasadena Aerosol Characterization
Observatory (PACO): Chemical and physical analysis of the western Los Angeles basin aerosol. Atmospheric Chemistry and Physics, 11(15),
7417–7443. https://doi.org/10.5194/acp-11-7417-2011

Hersey, S. P., Sorooshian, A., Murphy, S. M., Flagan, R. C., & Seinfeld, J. H. (2009). Aerosol hygroscopicity in the marine atmosphere: A closure
study using high-time-resolution, multiple-RH DASH-SP and size-resolved C-ToF-AMS data. Atmospheric Chemistry and Physics, 9(7),
2543–2554. https://doi.org/10.5194/acp-9-2543-2009

Intergovernmental Panel on Climate Change (2013). Summary for policymakers, in Climate change 2013: The physical science basis.
Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In T. F. Stocker, et al.
(Eds.) (p. 14). Cambridge, UK: Cambridge University Press.

Kaufman, Y. J., Tanre, D., Remer, L. A., Vermote, E. F., Chu, A., & Holben, B. N. (1997). Operational remote sensing of tropospheric aerosol over
land from EOSmoderate resolution imaging spectroradiometer. Journal of Geophysical Research, 102(D14), 17,051–17,067. https://doi.org/
10.1029/96JD03988

Kim, H., Barkey, B., & Paulson, S. E. (2010). Real refractive indices of alpha- and beta-pinene and toluene secondary organic aerosols gener-
ated from ozonolysis and photo-oxidation. Journal of Geophysical Research, 115, D24212. https://doi.org/10.1029/2010JD014549

Kim, H., Barkey, B., & Paulson, S. E. (2012). Real refractive indices and formation yields of secondary organic aerosol generated from photo-
oxidation of limonene and alpha-pinene: The effect of the HC/NOx ratio. The Journal of Physical Chemistry. A, 116(24), 6059–6067. https://
doi.org/10.1021/jp301302z

Kim, H., & Paulson, S. E. (2013). Real refractive indices and volatility of secondary organic aerosol generated from photooxidation and ozo-
nolysis of limonene, alpha-pinene and toluene. Atmospheric Chemistry and Physics, 13(15), 7711–7723. https://doi.org/10.5194/acp-13-
7711-2013

Kinne, S., Lohmann, U., Feichter, J., Schulz, M., Timmreck, C., Ghan, S., et al. (2003). Monthly averages of aerosol properties: A global com-
parison among models, satellite data, and AERONET ground data. Journal of Geophysical Research, 108(D20), 4634. https://doi.org/
10.1029/2001JD001253

Koepke, P., Hess, M., Schult, I., & Shettle, E. P. (1997). Global aerosol dataset, Rep. 243, (p. 44). Hamburg: Max-Plank-Inst. für Meteorol.
Kuwata, M., Zorn, S. R., & Martin, S. T. (2012). Using elemental ratios to predict the density of organic material composed of carbon, hydrogen,

and oxygen. Environmental Science & Technology, 46(2), 787–794. https://doi.org/10.1021/es202525q
Lambe, A. T., Cappa, C. D., Massoli, P., Onasch, T. B., Forestieri, S. D., Martin, A. T., et al. (2013). Relationship between oxidation level and

optical properties of secondary organic aerosol. Environmental Science & Technology, 47(12), 6349–6357. https://doi.org/10.1021/
es401043j

Lenoble, J. (1991). The particulate matter from biomass burning: A tutorial and critical review of its radiative impact. In J. S. Levine (Ed.),
Global biomass burning: Atmospheric, climatic, and biospheric implications (chap. 46, pp. 381–386). Cambridge, MA: MIT Press.

Levoni, C., Cervino, M., Guzzi, R., & Torricella, F. (1997). Atmospheric aerosol optical properties: A database of radiative characteristics for
different components and classes. Applied Optics, 36(30), 8031–8041. https://doi.org/10.1364/Ao.36.008031

Li, J., & Mao, J. T. (1990). Properties of atmospheric aerosols inverted from optical remote-sensing. Atmospheric Environment: Part A - General
Topics, 24(9), 2517–2522.

Liu, J. J., Zheng, Y. F., Li, Z. Q., & Wu, R. J. (2008). Ground-based remote sensing of aerosol optical properties in one city in Northwest China.
Atmospheric Research, 89(1–2), 194–205. https://doi.org/10.1016/j.atmosres.2008.01.010

Mätzler, C. (2002). MATLAB functions for Mie scattering and absorption, Research Report No. 2002–08, Institute of Applied Physics,
University of Bern.

McNaughton, C. S., Clarke, A. D., Howell, S. G., Pinkerton, M., Anderson, B., Thornhill, L., et al. (2007). Results from the DC-8 inlet characteri-
zation experiment (DICE): Airborne versus surface sampling of mineral dust and sea salt aerosols. Aerosol Science and Technology, 41(2),
136–159. https://doi.org/10.1080/02786820601118406

10.1029/2018JD028504Journal of Geophysical Research: Atmospheres

ALDHAIF ET AL. 8298

https://doi.org/10.1117/12.453736
https://doi.org/10.1117/12.453736
https://doi.org/10.1175/1520-0469(2002)059%3C0590:Voaaop%3E2.0.Co;2
https://doi.org/10.1175/1520-0469(2002)059%3C0590:Voaaop%3E2.0.Co;2
https://doi.org/10.1175/1520-0469(2002)059%3C0590:Voaaop%3E2.0.Co;2
https://doi.org/10.1029/98JD01647
https://doi.org/10.5194/acp-14-5793-2014
https://doi.org/10.5194/acp-14-5793-2014
https://doi.org/10.1016/S0021-8502(03)00052-1
https://doi.org/10.1016/S0021-8502(03)00052-1
https://doi.org/10.5194/acp-7-6131-2007
https://doi.org/10.5194/acp-7-6131-2007
https://doi.org/10.1029/2000JD000200
https://doi.org/10.1080/02786820290092276
https://doi.org/10.1175/1520-0442(1997)010%3C1562:Gcmcot%3E2.0.Co;2
https://doi.org/10.1175/1520-0442(1997)010%3C1562:Gcmcot%3E2.0.Co;2
https://doi.org/10.1175/1520-0442(1997)010%3C1562:Gcmcot%3E2.0.Co;2
https://doi.org/10.1021/acs.est.7b05742
https://doi.org/10.1021/acs.est.7b05742
https://doi.org/10.1002/jgrd.50307
https://doi.org/10.5194/acp-11-7417-2011
https://doi.org/10.5194/acp-9-2543-2009
https://doi.org/10.1029/96JD03988
https://doi.org/10.1029/96JD03988
https://doi.org/10.1029/2010JD014549
https://doi.org/10.1021/jp301302z
https://doi.org/10.1021/jp301302z
https://doi.org/10.5194/acp-13-7711-2013
https://doi.org/10.5194/acp-13-7711-2013
https://doi.org/10.1029/2001JD001253
https://doi.org/10.1029/2001JD001253
https://doi.org/10.1021/es202525q
https://doi.org/10.1021/es401043j
https://doi.org/10.1021/es401043j
https://doi.org/10.1364/Ao.36.008031
https://doi.org/10.1016/j.atmosres.2008.01.010
https://doi.org/10.1080/02786820601118406


Mei, F., Hayes, P. L., Ortega, A., Taylor, J. W., Allan, J. D., Gilman, J., et al. (2013). Droplet activation properties of organic aerosols observed at an
urban site during CalNex-LA. Journal of Geophysical Research: Atmospheres, 118, 2903–2917. https://doi.org/10.1002/jgrd.50285

Moise, T., Flores, J. M., & Rudich, Y. (2015). Optical properties of secondary organic aerosols and their changes by chemical processes.
Chemical Reviews, 115(10), 4400–4439. https://doi.org/10.1021/cr5005259

Muller, D., Ansmann, A., Wagner, F., Franke, K., & Althausen, D. (2002). European pollution outbreaks during ACE 2: Microphysical particle
properties and single-scattering albedo inferred from multiwavelength lidar observations. Journal of Geophysical Research, 107(D15),
4248. https://doi.org/10.1029/2001JD001110

Myhre, G., Stordal, F., Restad, K., & Isaksen, I. S. A. (1998). Estimation of the direct radiative forcing due to sulfate and soot aerosols. Tellus B,
50(5), 463–477. https://doi.org/10.1034/j.1600-0889.1998.t01-4-00005.x

Perring, A. E., Schwarz, J. P., Markovic, M. Z., Fahey, D. W., Jimenez, J. L., Campuzano-Jost, P., et al. (2017). In situ measurements of water
uptake by black carbon-containing aerosol in wildfire plumes. Journal of Geophysical Research: Atmospheres, 122, 1086–1097. https://doi.
org/10.1002/2016JD025688

Raut, J. C., & Chazette, P. (2008). Vertical profiles of urban aerosol complex refractive index in the frame of ESQUIF airborne measurements.
Atmospheric Chemistry and Physics, 8(4), 901–919. https://doi.org/10.5194/acp-8-901-2008

Redemann, J., Turco, R. P., Liou, K. N., Hobbs, P. V., Hartley, W. S., Bergstrom, R. W., et al. (2000). Case studies of the vertical structure of the
direct shortwave aerosol radiative forcing during TARFOX. Journal of Geophysical Research, 105(D8), 9971–9979. https://doi.org/10.1029/
1999JD901042

Redemann, J., Turco, R. P., Liou, K. N., Russell, P. B., Bergstrom, R. W., Schmid, B., et al. (2000). Retrieving the vertical structure of the effective
aerosol complex index of refraction from a combination of aerosol in situ and remote sensing measurements during TARFOX. Journal of
Geophysical Research, 105(D8), 9949–9970. https://doi.org/10.1029/1999JD901044

Redmond, H., & Thompson, J. E. (2011). Evaluation of a quantitative structure-property relationship (QSPR) for predicting mid-visible
refractive index of secondary organic aerosol (SOA). Physical Chemistry Chemical Physics, 13(15), 6872–6882. https://doi.org/10.1039/
c0cp02270e

Reggente, M., Peters, J., Theunis, J., Van Poppel, M., Rademaker, M., De Baets, B., & Kumar, P. (2015). A comparison of strategies for estimation
of ultrafine particle number concentrations in urban air pollution monitoring networks. Environmental Pollution, 199, 209–218. https://doi.
org/10.1016/j.envpol.2015.01.034

Rogers, S., & Girolami, M. (2016). A first course in machine learning. Boca Raton, FL: CRC Press.
Rosati, B., Wehrle, G., Gysel, M., Zieger, P., Baltensperger, U., &Weingartner, E. (2015). The white-light humidified optical particle spectrometer

(WHOPS)—A novel airborne system to characterize aerosol hygroscopicity. Atmospheric Measurement Techniques, 8(2), 921–939. https://
doi.org/10.5194/amt-8-921-2015

Sachse, G. W., Hill, G. F., Wade, L. O., & Perry, M. G. (1987). Fast-response, high-precision carbon-monoxide sensor using a tunable diode-laser
absorption technique. Journal of Geophysical Research, 92(D2), 2071–2081. https://doi.org/10.1029/JD092iD02p02071

Schwarz, J. P., Perring, A. E., Markovic, M. Z., Gao, R. S., Ohata, S., Langridge, J., et al. (2015). Technique and theoretical approach for quan-
tifying the hygroscopicity of black-carbon-containing aerosol using a single particle soot photometer. Journal of Aerosol Science, 81,
110–126. https://doi.org/10.1016/j.jaerosci.2014.11.009

Seinfeld, J. H., & Pandis, S. N. (2016). Atmospheric chemistry and physics (3rd ed.). New York: Wiley-Interscience.
Shettle, E. P., & Fenn, R. W. (1979), Models for the aerosol lower atmosphere and the effects of humidity variations on their optical properties,

Rep. Tr-79-0214, U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass.
Shingler, T., Crosbie, E., Ortega, A., Shiraiwa, M., Zuend, A., Beyersdorf, A., et al. (2016). Airborne characterization of subsaturated aerosol

hygroscopicity and dry refractive index from the surface to 6.5 km during the SEAC
4
RS campaign. Journal of Geophysical Research:

Atmospheres, 121, 4188–4210. https://doi.org/10.1002/2015JD024498
Shingler, T., Sorooshian, A., Ortega, A., Crosbie, E., Wonaschütz, A., Perring, A. E., et al. (2016). Ambient observations of hygroscopic growth

factor and f(RH) below 1: Case studies from surface and airborne measurements. Journal of Geophysical Research: Atmospheres, 121,
13,661–13,677. https://doi.org/10.1002/2016JD025471

Sokolik, I. N., & Toon, O. B. (1999). Incorporation of mineralogical composition into models of the radiative properties of mineral aerosol from
UV to IR wavelengths. Journal of Geophysical Research, 104(D8), 9423–9444. https://doi.org/10.1029/1998JD200048

Sorooshian, A., Hersey, S., Brechtel, F. J., Corless, A., Flagan, R. C., & Seinfeld, J. H. (2008). Rapid, size-resolved aerosol hygroscopic growth
measurements: Differential aerosol sizing and hygroscopicity spectrometer probe (DASH-SP). Aerosol Science and Technology, 42(6),
445–464. https://doi.org/10.1080/02786820802178506

Sorooshian, A., Murphy, S. N., Hersey, S., Gates, H., Padro, L. T., Nenes, A., et al. (2008). Comprehensive airborne characterization of aerosol
from a major bovine source. Atmospheric Chemistry and Physics, 8(17), 5489–5520. https://doi.org/10.5194/acp-8-5489-2008

Sorooshian, A., Shingler, T., Crosbie, E., Barth, M. C., Homeyer, C. R., Campuzano-Jost, P., et al. (2017). Contrasting aerosol refractive index and
hygroscopicity in the inflow and outflow of deep convective storms: Analysis of airborne data from DC3. Journal of Geophysical Research:
Atmospheres, 122, 4565–4577. https://doi.org/10.1002/2017JD026638

Tang, I. N. (1996). Chemical and size effects of hygroscopic aerosols on light scattering coefficients. Journal of Geophysical Research, 101(D14),
19,245–19,250. https://doi.org/10.1029/96JD03003

Taylor, J. R. (1982). An introduction to error analysis. Mill Valley, CA: University Science Books.
Thorsen, T. J., & Fu, Q. (2015). CALIPSO-inferred aerosol direct radiative effects: Bias estimates using ground-based Raman lidars. Journal of

Geophysical Research: Atmospheres, 120, 12,209–12,220. https://doi.org/10.1002/2015JD024095
Toon, O. B., Maring, H., Dibb, J., Ferrare, R., Jacob, D. J., Jensen, E. J., et al. (2016). Planning, implementation, and scientific goals of the studies

of emissions and atmospheric composition, clouds and climate coupling by regional surveys (SEAC(4)RS) field mission. Journal of
Geophysical Research: Atmospheres, 121, 4967–5009. https://doi.org/10.1002/2015JD024297

van Beelen, A. J., Roelofs, G. J. H., Hasekamp, O. P., Henzing, J. S., & Rockmann, T. (2014). Estimation of aerosol water and chemical compo-
sition from AERONET Sun-sky radiometer measurements at Cabauw, the Netherlands. Atmospheric Chemistry and Physics, 14(12),
5969–5987. https://doi.org/10.5194/acp-14-5969-2014

Wagner, N. L., Brock, C. A., Angevine, W. M., Beyersdorf, A., Campuzano-Jost, P., Day, D., et al. (2015). In situ vertical profiles of aerosol
extinction, mass, and composition over the southeast United States during SENEX and SEAC(4)RS: Observations of a modest aerosol
enhancement aloft. Atmospheric Chemistry and Physics, 15(12), 7085–7102. https://doi.org/10.5194/acp-15-7085-2015

Wang, C. L., Liu, Y., Everson, R. M., Rahat, A. A. M., & Zheng, S. (2017). Applied Gaussian process in optimizing unburned carbon content in fly
ash for boiler combustion. Mathematical Problems in Engineering, 2017, 1–8. https://doi.org/10.1155/2017/6138930

Wang, W., & Rood, M. J. (2008). Real refractive index: Dependence on relative humidity and solute composition with relevancy to
atmospheric aerosol particles. Journal of Geophysical Research, 113, D23305. https://doi.org/10.1029/2008JD010165

10.1029/2018JD028504Journal of Geophysical Research: Atmospheres

ALDHAIF ET AL. 8299

https://doi.org/10.1002/jgrd.50285
https://doi.org/10.1021/cr5005259
https://doi.org/10.1029/2001JD001110
https://doi.org/10.1034/j.1600-0889.1998.t01-4-00005.x
https://doi.org/10.1002/2016JD025688
https://doi.org/10.1002/2016JD025688
https://doi.org/10.5194/acp-8-901-2008
https://doi.org/10.1029/1999JD901042
https://doi.org/10.1029/1999JD901042
https://doi.org/10.1029/1999JD901044
https://doi.org/10.1039/c0cp02270e
https://doi.org/10.1039/c0cp02270e
https://doi.org/10.1016/j.envpol.2015.01.034
https://doi.org/10.1016/j.envpol.2015.01.034
https://doi.org/10.5194/amt-8-921-2015
https://doi.org/10.5194/amt-8-921-2015
https://doi.org/10.1029/JD092iD02p02071
https://doi.org/10.1016/j.jaerosci.2014.11.009
https://doi.org/10.1002/2015JD024498
https://doi.org/10.1002/2016JD025471
https://doi.org/10.1029/1998JD200048
https://doi.org/10.1080/02786820802178506
https://doi.org/10.5194/acp-8-5489-2008
https://doi.org/10.1002/2017JD026638
https://doi.org/10.1029/96JD03003
https://doi.org/10.1002/2015JD024095
https://doi.org/10.1002/2015JD024297
https://doi.org/10.5194/acp-14-5969-2014
https://doi.org/10.5194/acp-15-7085-2015
https://doi.org/10.1155/2017/6138930
https://doi.org/10.1029/2008JD010165


Westphal, D. L., & Toon, O. B. (1991). Simulations of microphysical, radiative, and dynamic processes in a continental-scale forest-fire smoke
plume. Journal of Geophysical Research, 96(D12), 22,379–22,400. https://doi.org/10.1029/91JD01956

Wilson, A., & Adams, R. (2013). Gaussian process kernels for pattern discovery and extrapolation. In Proceedings of the 30th International
Conference on Machine Learning (ICML-13, 1067–1075.

Yamasoe, M. A., Kaufman, Y. J., Dubovik, O., Remer, L. A., Holben, B. N., & Artaxo, P. (1998). Retrieval of the real part of the refractive index of
smoke particles from Sun/sky measurements during SCAR-B. Journal of Geophysical Research, 103(D24), 31,893–31,902. https://doi.org/
10.1029/98JD01211

Zarzana, K. J., Cappa, C. D., & Tolbert, M. A. (2014). Sensitivity of aerosol refractive index retrievals using optical spectroscopy. Aerosol Science
and Technology, 48(11), 1133–1144. https://doi.org/10.1080/02786826.2014.963498

Zhang, X. Q., Turpin, B. J., Mcmurry, P. H., Hering, S. V., & Stolzenburg, M. R. (1994). Mie theory evaluation of species contributions to 1990
wintertime visibility reduction in the Grand-Canyon. Journal of the Air & Waste Management Association, 44(2), 153–162. https://doi.org/
10.1080/1073161X.1994.10467244

10.1029/2018JD028504Journal of Geophysical Research: Atmospheres

ALDHAIF ET AL. 8300

https://doi.org/10.1029/91JD01956
https://doi.org/10.1029/98JD01211
https://doi.org/10.1029/98JD01211
https://doi.org/10.1080/02786826.2014.963498
https://doi.org/10.1080/1073161X.1994.10467244
https://doi.org/10.1080/1073161X.1994.10467244


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (ECI-RGB.icc)
  /CalCMYKProfile (Photoshop 5 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


